Interval positroid varieties and a deformation of the ring of symmetric functions
نویسندگان
چکیده
Define the interval rank r[i,j] : Grk(C) → N of a k-plane V as the dimension of the orthogonal projection π[i,j](V ) of V to the (j − i + 1)-dimensional subspace that uses the coordinates i, i + 1, . . . , j. By measuring all these ranks, we define the interval rank stratification of the Grassmannian Grk(C). It is finer than the Schubert and Richardson stratifications, and coarser than the positroid stratification studied by Lusztig, Postnikov, and others, so we call the closures of these strata interval positroid varieties. We connect Vakil’s “geometric Littlewood-Richardson rule”, in which he computed the homology classes of Richardson varieties (Schubert varieties intersected with opposite Schubert varieties), to Erdős-Ko-Rado shifting, and show that all of Vakil’s varieties are interval positroid varieties. We build on his work in three ways: (1) we extend it to arbitrary interval positroid varieties, (2) we use it to compute in equivariant K-theory, not just homology, and (3) we simplify Vakil’s (2 + 1)-dimensional “checker games” to 2-dimensional diagrams we call “IP pipe dreams”. The ring Symm of symmetric functions and its basis of Schur functions is well-known to be very closely related to the ring ⊕ a,bH∗(Gra(C )) and its basis of Schubert classes. We extend the latter ring to equivariant K-theory (with respect to a circle action on each C), and compute the structure constants of this two-parameter deformation of Symm using the interval positroid technology above. Résumé. Le rang d’intervalle r[i,j] : Grk(C)→ N d’un sous–espace V ⊂ C de dimension k est la dimension de la projection orthogonale π[i,j](V ) de V sur le sous–espace de dimension (j − i+ 1) paramétré par les coordonnées i, i + 1, . . . j. En considérant tous les rangs [i, j] nous définissons la stratification selon le rang d’intervalle de la Grassmannienne Grk(C). Cette stratification est plus fine que les stratifications de Schubert et de Richardson, mais plus grossière que la stratification de positroı̈de étudiée entre autres par Lusztig et Postnikov. Nous appelons donc variétés d’intervalle positroı̈de les clôtures de ces strates. Nous relions la “règle de Littlewood–Richardson géométrique” de Vakil, qui calcule les classes d’homologie des variétés de Richardson (intersections des variétés de Schubert et des variétés de Schubert opposées) au déplacement d’Erdős-Ko-Rado. Nous prouvons que toutes les variétés de Vakil sont des variétés d’intervalle positroı̈de. Nous étendons la théorie de Vakil de trois fa cons: (1) nous l’étendons aux variétés d’intervalle positroı̈de quelconques, (2) nous l’utilisons pour del calculs en K–théorie équivariante, plutôt que simplement en homologie, et (3) nous simplifions les “jeux de dames” de Vakil de dimension (2 + 1) en introduisant des diagrammes bidimensionnels que nous appelons “tuyauteries IP” (pour n > 1 ceci n’est pas une pipe). ∗Email: [email protected]. Supported by the NSF. †Email: [email protected] Supported by Marie Curie International Outgoing Fellowship 2009-254577 of the EU Seventh Framework Program. 1365–8050 c © 2014 Discrete Mathematics and Theoretical Computer Science (DMTCS), Nancy, France 924 Allen Knutson and Mathias Lederer Il est bien connu que l’anneau Symm des fonctions symétriques et sa base des fonctions de Schur sont étroitement liées à l’anneau ⊕ a,bH∗(Gra(C )) et à sa base des classes de Schubert. Nous étendons cet anneau à la K– théorie équivariante (pour une action du cercle sur chaque C) et nous calculons les constantes de structure de cette déformation à deux paramètres de Symm, par le biais des techniques d’intervalles positroı̈des précédentes.
منابع مشابه
FUZZY IDEALS OF NEAR-RINGS WITH INTERVAL VALUED MEMBERSHIP FUNCTIONS
In this paper, for a complete lattice L, we introduce interval-valued L-fuzzy ideal (prime ideal) of a near-ring which is an extended notion of fuzzy ideal (prime ideal) of a near-ring. Some characterization and properties are discussed.
متن کاملEffects of Power-Law Distribution and Exponential with Uniform Pressures on Vibration Behavior of Reinforced Cylindrical Shell Made of Functionally Graded Materials under Symmetric Boundary Conditions
In this paper, the influence of the constituent volume fractions by changing the values of the power-law exponent with uniform pressure on the vibration frequencies of reinforced functionally graded cylindrical shells is studied. The FGM shell with ring is developed in accordance to the volume fraction law from two constituents namely stainless steel and nickel. These constituents are graded th...
متن کاملSchubert Calculus and Puzzles
1. Interval positroid varieties 1 1.1. Schubert varieties 1 1.2. Schubert calculus 2 1.3. First positivity result 3 1.4. Interval rank varieties 5 2. Vakil’s Littlewood-Richardson rule 7 2.1. Combinatorial shifting 7 2.2. Geometric shifting 7 2.3. Vakil’s degeneration order 9 2.4. Partial puzzles 10 3. Equivariant and Kextensions 11 3.1. K-homology 11 3.2. K-cohomology 12 3.3. Equivariant K-the...
متن کاملFuzzy number-valued fuzzy relation
It is well known fact that binary relations are generalized mathematical functions. Contrary to functions from domain to range, binary relations may assign to each element of domain two or more elements of range. Some basic operations on functions such as the inverse and composition are applicable to binary relations as well. Depending on the domain or range or both are fuzzy value fuzzy set, i...
متن کاملAxi-Symmetric Deformation Due to Various Sources in Saturated Porous Media with Incompressible Fluid
The general solution of equations of saturated porous media with incompressible fluid for two dimensional axi-symmetric problem is obtained in the transformed domain. The Laplace and Hankel transforms have been used to investigate the problem. As an application of the approach concentrated source and source over circular region have been taken to show the utility of the approach. The transforme...
متن کامل